AKA Shakespeare

A Scientific Approach to the Authorship Question

by Peter A. Sturrock

Palo Alto. Exoscience. 2013. xiii + 320 pages

The calculations of the probability values in "AKA Shakespeare" are here performed only for the first example (the book on **page 46**).

In this case only the example "for Beatrice" (Stratfordian) is treated and only the column "Stratford Theory" (H_1) is executed.

The "Post Probability" is given in the book as 0.15.

• The calculation of this figure is shown.

From **page 46** the following numbers are taken:

	D	H_1	H_2	H_3
S_1	5	1	20	1
S_2	1	10	1	10

These are the "weights" made in the text by "Beatrice", From these "weights" the "probabilities" are to calculate first.

The procedure is as described in the appendix on page 304:

From the weights (**W**) the probabilities (**P**) are calculated.

("The probabilities may then be derived from the weights by dividing each weight by the sum of the weights").

The formula for calculating the probabilities is given as:

$$P(S_n) = \frac{W(S_n)}{\sum_k W(S_k)}.$$

If there are only two "Statements" (S_1 and S_2), as in the present case, the formula simplifies. For example, in the case of S_1 :

$$P(S_1) = \frac{W(S_1)}{W(S_1) + W(S_2)}$$

Since the names of the "weights" $W(S_n)$ in the formula are based on the columns of the table and the notations are not differentiated, they are labeled here differently for a better understanding: $W(S_1) = a_1$, etc.:

$a_1 = 5$	$b_1 = 1$	$c_1 = 20$	$d_1 = 1$
$a_2 = 1$	$b_2 = 10$	$c_2 = 1$	$d_2 = 10$

The formula requires in each individual case the following simple calculation:

(In each column each "weight" is divided by the "sum of the weights" in the column.):

$\frac{a_1}{a_1 + a_2}$	$\frac{b_1}{b_1 + b_2}$	$\frac{c_1}{c_1 + c_2}$	$\frac{d_1}{d_1 + d_2}$
$\frac{a_2}{a_1 + a_2}$	$\frac{b_2}{b_1 + b_2}^2$	$\frac{c_2}{c_1 + c_2}$	$\frac{d_2}{d_1 + d_2}$

in numbers:

5	1	20	1
5+1	$\frac{1}{1+10}$	${20+1}$	$\frac{1}{1+10}$
1	10	1	10
${5+1}$	$\frac{1}{1+10}^{2}$	${20+1}$	$\frac{1}{1+10}$

as fractions:

5	1	20	1
6	<u></u>	$\overline{21}$	11
1	10	1	10
$\frac{-}{6}$	$\frac{\overline{11}}{11}$	$\frac{\overline{21}}{21}$	11

The results decimal (from here on a calculator is necessary):

0.83333333	0.09090909	0.95238095	0.09090909
0.16666667	0.90909091	0.04761905	0.90909091

It now involves "probabilities", that is, the values can only be between 0 and 1. The sum in each column **mus**t be 1, which is the case here:

1.0000000	1.0000000	1.0000000	1.0000000

Note: Even if the true facts are not known, the probabilities for "lame" and "not lame" **must** sum up to 1, because ultimately either "lame" or "not lame" applies - tertium non datur!

Here again the numerical values of the probabilities calculated above:

0.83333333	0.09090909	0.95238095	0.09090909
0.16666667	0.90909091	0.04761905	0.90909091

In the formula for the "Post Probability" they are labeled in this way:

$P(S_1/D)$	$P(S_1/H_1)$	$P(S_1/H_2)$	$P(S_1/H_3)$
$P(S_2/D)$	$P(S_2/H_1)$	$P(S_2/H_2)$	$P(S_2/H_3)$

The formula for calculation (p. 303.) is:

$$P(H_k/D) = \sum_{n=1}^{N} \frac{P(S_n/H_k) \cdot P(S_n/D)}{\sum_{j} P(S_n/H_j)}.$$

Designed for the case of the "first hypothesis" H₁ (Stratford) this formula reads as:

$$P(H_1/D) = \frac{P(S_1/H_1) \cdot P(S_1/D)}{P(S_1/H_1) + P(S_1/H_2) + P(S_1/H_3)} + \frac{P(S_2/H_1) \cdot P(S_2/D)}{P(S_2/H_1) + P(S_2/H_2) + P(S_2/H_3)}$$

The value can now be calculated with the numerical values from the table of probabilities:

$$P(H_1/D) = \frac{0.09090 \cdot 0.83333}{0.09090 + 0.95238 + 0.09090} + \frac{0.9090 \cdot 0.16666}{0.9090 + 0.0476 + 0.9090}$$

$$= \frac{0.07578}{1.13468} + \frac{0.15149}{1.8656}$$

$$= 0.066759 + 0.08120$$

$$= 0.1479$$

 $\approx 0.15 \ .$ This is the value given above and in the book

:

$$a_1 + a_2 = a_3$$
 $b_1 + b_2 = b_3$ $c_1 + c_2 = c_3$ $d_1 + d_2 = d_3$

$$\frac{a_1}{a_3} = a_4$$
 $\frac{b_1}{b_3} = b_4$ $\frac{c_1}{c_3} = c_4$ $\frac{d_1}{d_3} = d_4$

$$\frac{a_2}{a_3} = a_5$$
 $\frac{b_2}{b_3} = b_5$ $\frac{c_2}{c_3} = c_5$ $\frac{d_2}{d_3} = d_5$

$$b_4 \cdot a_4 = K$$
$$b_4 + c_4 + d_4 = L$$

$$b_5 \cdot a_5 = M$$
$$b_5 + c_5 + d_5 = N$$

$$\frac{K}{L} = P$$

$$\frac{M}{N} = Q$$

$$P+Q\ =\ W$$