AKA Shakespeare

A Scientific Approach to the Authorship Question

by Peter A. Sturrock
Palo Alto. Exoscience. 2013. xiii + 320 pages

The calculations of the probability values in "AKA Shakespeare" are here performed only for the first example (the book on page 46).
In this case only the example "for Beatrice" (Stratfordian) is treated and only the column "Stratford Theory" $\left(\mathrm{H}_{1}\right)$ is executed.
The "Post Probability" is given in the book as $\mathbf{0 . 1 5}$.

- The calculation of this figure is shown.

From page 46 the following numbers are taken:

	D	H_{1}	H_{2}	H_{3}
	$\mathrm{~S}_{1}$	5	1	20
$\mathrm{~S}_{2}$	1	10	1	10

These are the "weights" made in the text by "Beatrice", From these "weights" the "probabilities" are to calculate first.
The procedure is as described in the appendix on page 304:
From the weights (\mathbf{W}) the probabilities (\mathbf{P}) are calculated.
("The probabilities may then be derived from the weights by dividing each weight by the sum of the weights").
The formula for calculating the probabilities is given as:

$$
P\left(S_{n}\right)=\frac{W\left(S_{n}\right)}{\sum_{k} W\left(S_{k}\right)} .
$$

If there are only two "Statements" (S_{1} and S_{2}), as in the present case, the formula simplifies. For example, in the case of S_{1} :

$$
P\left(S_{1}\right)=\frac{W\left(S_{1}\right)}{W\left(S_{1}\right)+W\left(S_{2}\right)}
$$

Since the names of the "weights" $\mathrm{W}\left(\mathrm{S}_{\mathrm{n}}\right)$ in the formula are based on the columns of the table and the notations are not differentiated, they are labeled here differently for a better understanding: $\mathrm{W}\left(\mathrm{S}_{1}\right)=\mathrm{a}_{1}$, etc.:

$\mathrm{a}_{1}=5$	$\mathrm{~b}_{1}=1$	$\mathrm{c}_{1}=20$	$\mathrm{~d}_{1}=1$
$\mathrm{a}_{2}=1$	$\mathrm{~b}_{2}=10$	$\mathrm{c}_{2}=1$	$\mathrm{~d}_{2}=10$

The formula requires in each individual case the following simple calculation:
(In each column each "weight" is divided by the "sum of the weights" in the column.):

$\frac{a_{1}}{a_{1}+a_{2}}$	$\frac{b_{1}}{b_{1}+b_{2}}$	$\frac{c_{1}}{c_{1}+c_{2}}$	$\frac{d_{1}}{d_{1}+d_{2}}$
$\frac{a_{2}}{a_{1}+a_{2}}$	$\frac{b_{2}}{b_{1}+b_{2}}{ }^{2}$	$\frac{c_{2}}{c_{1}+c_{2}}$	$\frac{d_{2}}{d_{1}+d_{2}}$

in numbers:

$\frac{5}{5+1}$	$\frac{1}{1+10}$	$\frac{20}{20+1}$	$\frac{1}{1+10}$
$\frac{1}{5+1}$	$\frac{10}{1+10} 2$	$\frac{1}{20+1}$	$\frac{10}{1+10}$

as fractions:

$\frac{5}{6}$	$\frac{1}{11}$	$\frac{20}{21}$	$\frac{1}{11}$
$\frac{1}{6}$	$\frac{10}{11}$	$\frac{1}{21}$	$\frac{10}{11}$

The results decimal (from here on a calculator is necessary):

0.83333333	0.09090909	0.95238095	0.09090909
0.16666667	0.90909091	0.04761905	0.90909091

It now involves "probabilities", that is, the values can only be between 0 and 1.
The sum in each column must be 1 , which is the case here:

1.0000000	1.0000000	1.0000000	1.0000000

Note: Even if the true facts are not known, the probabilities for "lame" and "not lame" must sum up to 1, because ultimately either "lame" or "not lame" applies - tertium non datur!

Here again the numerical values of the probabilities calculated above:

0.83333333	0.09090909	0.95238095	0.09090909
0.16666667	0.90909091	0.04761905	0.90909091

In the formula for the "Post Probability" they are labeled in this way:

$P\left(S_{1} / D\right)$	$P\left(S_{1} / H_{1}\right)$	$P\left(S_{1} / H_{2}\right)$	$P\left(S_{1} / H_{3}\right)$
$P\left(S_{2} / D\right)$	$P\left(S_{2} / H_{1}\right)$	$P\left(S_{2} / H_{2}\right)$	$P\left(S_{2} / H_{3}\right)$

The formula for calculation (p. 303.) is:

$$
P\left(H_{k} / D\right)=\sum_{n=1}^{N} \frac{P\left(S_{n} / H_{k}\right) \cdot P\left(S_{n} / D\right)}{\sum_{j} P\left(S_{n} / H_{j}\right)} .
$$

Designed for the case of the "first hypothesis" H_{1} (Stratford) this formula reads as:

$$
P\left(H_{1} / D\right)=\frac{P\left(S_{1} / H_{1}\right) \cdot P\left(S_{1} / D\right)}{P\left(S_{1} / H_{1}\right)+P\left(S_{1} / H_{2}\right)+P\left(S_{1} / H_{3}\right)}+\frac{P\left(S_{2} / H_{1}\right) \cdot P\left(S_{2} / D\right)}{P\left(S_{2} / H_{1}\right)+P\left(S_{2} / H_{2}\right)+P\left(S_{2} / H_{3}\right)}
$$

The value can now be calculated with the numerical values from the table of probabilities:

$$
\begin{aligned}
P\left(H_{1} / D\right)= & \frac{0.09090 \cdot 0.83333}{0.09090+0.95238+0.09090}+\frac{0.9090 \cdot 0.16666}{0.9090+0.0476+0.9090} \\
& =\frac{0,07578}{1.13468}+\frac{0.15149}{1.8656} \\
& =0.066759+0.08120 \\
& =0.1479 \\
& \approx 0.15
\end{aligned}
$$

This is the value given above and in the book
$\begin{array}{llll}\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} & \mathrm{~d}_{1} \\ \mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2} & \mathrm{~d}_{2}\end{array}$
$\begin{array}{llll}\mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2} & \mathrm{~d}_{2}\end{array}$
$P\left(S_{1} / D\right)$
$a_{1}+a_{2}=a_{3} \quad b_{1}+b_{2}=b_{3} \quad c_{1}+c_{2}=c_{3} \quad d_{1}+d_{2}=d_{3}$
$\frac{a_{1}}{a_{3}}=a_{4} \quad \frac{b_{1}}{b_{3}}=b_{4} \quad \frac{c_{1}}{c_{3}}=c_{4} \quad \frac{d_{1}}{d_{3}}=d_{4}$
$\frac{a_{2}}{a_{3}}=a_{5} \quad \frac{b_{2}}{b_{3}}=b_{5} \quad \frac{c_{2}}{c_{3}}=c_{5} \quad \frac{d_{2}}{d_{3}}=d_{5}$
$b_{4} \cdot a_{4}=K$
$b_{4}+c_{4}+d_{4}=L$
$b_{5} \cdot a_{5}=M$
$b_{5}+c_{5}+d_{5}=N$
$\frac{K}{L}=P$
$\frac{M}{N}=Q$
$\mathrm{P}+\mathrm{Q}=\mathrm{W}$

